Analyzing All That Data

Techniques for Sifting Haystacks and Finding Needs

Jose Nazario <jose@monkey.org>
The problem is not gathering data
 We have instrumented over 1.2% of allocated IPv4
 Approximately 2 /8 networks worth
 We can collect spam, phishing mails in bulk
The problem is in reliably detecting signal
 New attacks
 Reliably classify spam

Needle and haystack problem
Improving Payload Analysis

Allows for the identification of new worms
IMS calculates an MD5 hash for all payloads
 Similar payloads look wildly different
 See similar payloads … hash explosion

Similar is the trick

Motivation: improve new attack detection and characterization
String Analysis Methods

Works on lists of bytes
Great for plain text (i.e., mail)
Classic Ways of Analysis

Look for substrings
Regular expressions
Hashes (SHA1, MD5)

Problems
- Point changes cause match failure
- Regular expressions are boolean, not fuzzy
- Small changes fail to be detected as insignificant
- Complexity of expressions
The Viagra Example

Vi--agra
Vi-ag-ra
VIAGR @
Via-gra
Vi.ag-ra
vi__@gr@
Via-gra
Viagra
Via-gra
Vi--agra
Viagr,a
Viaqra
MD5 Difference Exaggeration

Viagra -> eda81bbc0e8bb2bf76ecef1244d8de7e
Viagra -> ee686a6abfd4b52f784efc7c7c14add2
VIAGR @ -> 73d2f57ff0bd46f4145c3c5a78654d94
Via-gra -> 2a00142f56610cf610cffec99fba5b25
Vi.ag-ra -> 659f3ce1e8dc223d87e42d74b7390363
vi__@gr@ -> 5e5fb2d7497c7448c753d24d1db4c46b
Viagra -> 324cfde55522050027f396041089c2c7
Via-gra -> 2a00142f56610cf610cffec99fba5b25
Vi--agra -> eda81bbc0e8bb2bf76ecef1244d8de7e
Viag,r,a -> f206d1467274d8f68018b5ba69bdf497
Viaqra -> 7f99a0d0db3fad96afbea4e973c5673c
Finding Similar Payloads

Multiple ways to discover similar payloads
Main ones:
 - Suffix trees
 - String distance functions

Each has weaknesses and strengths
Bioinformatics Inspiration

Use sequence alignment techniques

Taking a cue from bioinformatics

Treat the payload as a sequence of bytes
Align similar inputs
Cluster groups of like inputs
Find consensus sequence
Suffix Trees

Builds up a tree of strings starting from string start (the root of the tree)
Branch creation at first difference

Implemented as a library from Christian Kreibich (libstree)

http://www.cl.cam.ac.uk/~cpk25/libstree/index.html

3 Similar Sentences

She sells sea shells down by the sea shore.
She sells sea shells by the sea shore.
She sells sea shells by the roadside.
Suffix Tree Example

She sells sea shells by the sea shore.

down by the sea shore

roadside.

root

branches
Suffix Tree Problems

She sells sea shells by the sea shore.

Infinite branching with different inputs
Branches never return to the root
String Distance Functions

Several popular functions Calculate the “cost” of changing one string to another
Cost is calculated differently Not all distance functions work for all scenarios

Several are implemented in libdistance

http://monkey.org/~jose/software/libdistance/
Levenshtein Distance Function

Every change has a uniform cost of 1
Changes are character replacements or insertions

She sells sea shells by the sea shore.
She sells sea shells down by the sea shore.

Cost is 5 to insert 5 spaces.

Levenshtein Weaknesses

Not all conversions are equal

Compare:

\[LD(x, y) = 2 \]

Viagara

V1@gara

Viagra

\[LD(x, y) = 20 \]

Not all insertion costs should scale linearly

Welcome to KL Malaysia

\[LD(x, y) = 20 \]
Hamming Distance Function

Position by position comparisons
Differences yield 1 point in cost of conversion

Inputs must be of same length

She sells sea shells by the sea shore.
She sells sea smells by the sea shore.

\[HD(x,y) = 1 \]

Useful for detecting minute changes in a large data set

R. W. Hamming, "Error Detecting and Error Correcting Codes",
Hamming Weaknesses

An early point change can create a high $HD()$ cost

She sells sea shells by the sea shore.
He sells sea shells by the sea shores.

$HD(x,y) = 35$

Doesn’t deal well with similar characters, misspellings
Damerau Distance Function

Similar to Levenshtein distance
Tolerates adjacent character swaps

She sells sea shells by the sea shore.
She sells se ashells by teh sea shore.

$$DD(x,y) = 0 \ (LD(x,y) = 4)$$

Great for mis-spellers.

Needleman Wunsch Distance

Corrects some of the deficiencies of Levenshtein

Uses variable costs to calculate conversions and insertions

Conversion costs

\[\text{Viagrappe} \]

\[\text{V1@gar@} \]

\[DD(x,y) = 0.3 \]

These Method Still Fail

Transposed segments of payloads
Use the BLAST algorithm to detect this

she sells sea shells down by the sea shore

down by the sea shore she sells sea shells

Polymorphic attack payloads
Outputs of these Algorithms

Suffix trees return the longest common substring in a set
Useful only if the starting set is closely related

She sells seashells along the roadside.
She sells seashells down by the sea shore

String distance algorithms return relative distances between inputs
Useful to cluster like payloads together
Current Use of These Algorithms

Longest common substring analysis of payloads
Find similar looking payloads, look for substantial LCS
Reveals similar exploit usage across different attack sources

Distances between payloads indicate mutants of malware, spam
Viagra Edit Distances

<table>
<thead>
<tr>
<th>Original</th>
<th>Transformation</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>viagra</td>
<td>vi--agra</td>
<td>2</td>
</tr>
<tr>
<td>viagra</td>
<td>vi-ag-ra</td>
<td>3</td>
</tr>
<tr>
<td>viagra</td>
<td>viagr @</td>
<td>2</td>
</tr>
<tr>
<td>viagra</td>
<td>via-gra</td>
<td>1</td>
</tr>
<tr>
<td>viagra</td>
<td>vi.agr-a</td>
<td>2</td>
</tr>
<tr>
<td>viagra</td>
<td>vi__@gr@</td>
<td>4</td>
</tr>
<tr>
<td>viagra</td>
<td>viagra</td>
<td>0</td>
</tr>
<tr>
<td>viagra</td>
<td>via-gra</td>
<td>1</td>
</tr>
<tr>
<td>viagra</td>
<td>vi--agra</td>
<td>2</td>
</tr>
<tr>
<td>viagra</td>
<td>viagr,a</td>
<td>1</td>
</tr>
<tr>
<td>viagra</td>
<td>viagra</td>
<td>1</td>
</tr>
</tbody>
</table>
A Spam Friendly Cost Matrix

Default costs in points:
conversion costs 1
insertion costs 0.2
Cost to change case: 0
Cost to change from a to @: 0.1
Cost to change from i to 1: 0.1
Cost to insert - after a: 0.1
Cost to insert - after i: 0.1
<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>NW Distance</th>
<th>Edit Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superviagra</td>
<td>VIAGRA:</td>
<td>0.3</td>
<td>11</td>
</tr>
<tr>
<td>Superviagra</td>
<td>Via-gra:</td>
<td>0.3</td>
<td>7</td>
</tr>
<tr>
<td>Superviagra</td>
<td>V, iagra:</td>
<td>0.4</td>
<td>6</td>
</tr>
<tr>
<td>Superviagra</td>
<td>Via-gra:</td>
<td>0.3</td>
<td>7</td>
</tr>
<tr>
<td>Superviagra</td>
<td>Superviagra:</td>
<td>0.8</td>
<td>11</td>
</tr>
<tr>
<td>VIAGR @</td>
<td>Superviagra:</td>
<td>0.8</td>
<td>7</td>
</tr>
<tr>
<td>VIAGR @</td>
<td>Vi--agra:</td>
<td>0.8</td>
<td>7</td>
</tr>
<tr>
<td>VIAGR @</td>
<td>via'gra:</td>
<td>0.8</td>
<td>7</td>
</tr>
<tr>
<td>VIAGR @</td>
<td>V"iagra:</td>
<td>0.8</td>
<td>6</td>
</tr>
<tr>
<td>VIAGR @</td>
<td>Vi--ag--ra:</td>
<td>0.9</td>
<td>7</td>
</tr>
<tr>
<td>VIAGR @</td>
<td>"viag.ra:</td>
<td>1.0</td>
<td>8</td>
</tr>
<tr>
<td>Via-gra</td>
<td>V"iagra:</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>Via-gra</td>
<td>"viag.ra:</td>
<td>0.6</td>
<td>4</td>
</tr>
<tr>
<td>Via-gra</td>
<td>Viagra:</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>
Clustering Analysis

Find all pairs distances between payloads

\[
\text{for } x \text{ in payloads:} \\
\quad \text{for } y \text{ in payloads:} \\
\quad d[x][y] = \text{distance}(x, y)
\]

Next step is dependent on clustering algorithm
Clustering Data

K-means clustering
Pick k cluster centers
Calculate distances
Recompute centers
Repeat until convergence

Hierarchical clustering
Root group
Find furthest points, split group
Recompute, repeat until all distances within tolerance

V. Guralnik and G. Karypis, Workshop on Data Mining in Bioinformatics (2001) 73-80.
Results from Clustering

Reduced data complexity
 From 1000’s of points to dozens
 Makes future classification easy

Distill features from a cluster
 Derive a consensus pattern

Time dependent clustering can reveal mutations

Phylogeny tree analysis
Initial Experiments

Using spam
- Rich data source, problem of interest
- Have years worth of spam payloads

Problems
- Implementation inefficiencies
- Runtime memory footprint
- Allocating time to complete this

Currently do payload analysis on popular payloads
Haven’t built up NW cost matrices for binary payloads
Libdistance has been released

http://monkey.org/~jose/software/libdistance/

Jose Nazario and Evan Cooke
Current version: 0.2.0
Implements these algorithm
0.2.1 will have improved Python bindings
(written in the past day!)

LibStree 0.4, Christian Kreibach

http://www.cl.cam.ac.uk/~cpk25/libstree/
Uses of Libdistance

Logfile analysis
Mail sorting
HTTP request analysis
#!/usr/bin/env python

import distance

s1 = 'Viagra'
s2 = 'V i a g r a'
s3 = 'Welcome to KL Malaysia'
print distance.levenshtein(s1, s2)
print distance.levenshtein(s1, s3)
import distance

s1 = 'Viagra'
s2 = 'V i a g r a'

m = distance.nw_matrix(insertion = 0.1, \conversion = 10.0)
m.setInsertion('a', ' ', 0.1)
m.setInsertion('i', ' ', 0.1)
print '%s -> %s: %.2f' % (s1, s2, \distance.needleman_wunsch(s1, s2, m))
del(m)
Graph Comparison Algorithms

Typically built on a callgraph
Executables have specific patterns
Families of executables have patterns
Example Callgraph

Directed Graph
Based on CALL, RETURN structure
Can be obtained by tracing a process
IDA Pro can also generate callgraphs
Graph Isomorphism Comparisons

Lets you highlight only differences

Useful in malware analysis, binary patch analysis

Method for binaries described by Todd Sabin

COMPARING BINARIES WITH GRAPH ISOMORPHISMS
Todd Sabin, Bindview Research